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The quantum corrections to the energies of the � point optical phonon modes �Kohn anomalies� in graphene
nanoribbons �NRs� are investigated. We show theoretically that the longitudinal optical �LO� modes undergo a
Kohn anomaly effect, while the transverse optical �TO� modes do not. In relation to Raman spectroscopy, we
show that the longitudinal optical modes are not Raman active near the zigzag edge, while the transverse
optical modes are not Raman active near the armchair edge. These results are useful for identifying the
orientation of the edge of graphene nanoribbons by G band Raman spectroscopy, as is demonstrated experi-
mentally. The differences in the Kohn anomalies for nanoribbons and for metallic single-wall nanotubes are
pointed out, and our results are explained in terms of pseudospin effects.
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I. INTRODUCTION

Graphene nanoribbons �NRs� are rectangular sheets of
graphene with lengths up to several micrometers and widths
as small as nanometers.1–3 NRs can be regarded as unrolled
single-wall nanotubes �SWNTs�. Since SWNTs exhibit either
metallic or semiconducting behavior depending on the diam-
eter and chirality of the hexagonal carbon lattice of the tube,4

it is expected that the electronic properties of NRs depend on
the width and “chirality” of the edge.5–7 In fact it has been
predicted that their electronic properties near the zigzag edge
are quite different from those near the armchair edge.8–11

Thus the characterization of the NRs as well as SWNTs is a
matter of prime importance.

Raman spectroscopy has been widely used for the charac-
terization of SWNTs �Refs. 12–21� and graphenes.22–27 Re-
cently, it has been shown that the frequencies and spectral
widths of the � point optical phonons �called the G band in
Raman spectra� depend on the position of the Fermi energy
EF and the chirality of the metallic SWNT.28–31 The Fermi-
energy dependence of the Raman spectra can be used to de-
termine the position of the Fermi energy, and the chirality
dependence of the Raman spectra provides detailed informa-
tion on the electronic properties near the Fermi energy of
metallic SWNTs. These dependences originate from the fact

that the conduction electrons of a metal partly screen the
electronic field of the ionic lattice. Kohn pointed out that the
ability of the electrons to screen the ionic electric field de-
pends strongly on the geometry of the Fermi surface, and this
screening leads to a change in the frequency of a specific
phonon and an increase in its dissipation �the Kohn anoma-
lies �KAs��.32 The KAs in graphene systems are unique in the
sense that they can occur with respect to the � point phonons
while the KA in a normal metal occurs with respect to
phonons with 2kF, where kF is the Fermi wave vector. The
uniqueness of graphene comes from the geometry of the
Fermi surface given by the Dirac cone.33–40

Since the geometry of the Fermi surface of NRs, and the
energy band structure of NRs depend on the orientation of
the edge,9–11 one may expect that the KAs of NRs depend on
the “chirality” of the edge like the KAs of metallic SWNTs.
In this paper, we study KAs in graphene NRs with zigzag
and armchair edges. A NR with a zigzag �armchair� edge is
hereafter referred to as a Z-NR �an A-NR� for simplicity �see
Fig. 1�a� for an N Z-NR with a width W=N�, where �
�3acc /2 and acc�=0.142 nm� is the bond length�. We will
show that the transverse optical �TO� phonon modes do not
undergo KAs in both A-NRs and Z-NRs. The dissipation
of the longitudinal optical �LO� phonon modes in Z-NRs is
suppressed as compared to those in A-NRs. We also show
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that the LO �TO� modes are not Raman active in Z-NRs
�A-NRs�, and that the KAs should be observed in only
A-NRs. This fact is useful in identifying the orientation of
the edge of NRs by G band Raman spectroscopy.

It is noted that the D band, which consists of an interval-
ley K point phonon, has been used to characterize the orien-
tation of the edge of graphite and graphene. Pimenta et al.25

observed that the intensity of the D band near the armchair
edge of highly oriented pyrolytic graphite �HOPG� is much
stronger than that near the zigzag edge of HOPG. This is
confirmed for single-layer graphene by the experiments of
You et al.,41 who also show that the D band has a strong laser
polarization dependence. However, a strong D band intensity
appears only at �20 nm from the edges, so that the obser-
vation of this effect requires a precise experimental
technique.25

This paper is organized as follows. In Sec. II, we study
KAs in Z-NRs and A-NRs. In Sec. III, we point out that the
LO modes in Z-NRs �TO modes in A-NRs� are not Raman
active and show experimental results. In Sec. IV, the mecha-
nism of the edge-dependent KAs and Raman intensities is
explained in terms of the pseudospin. A discussion and sum-
mary are given in Sec. V and Sec. VI.

II. KOHN ANOMALIES

A. Zigzag NRs

KAs are relevant to the electron-phonon �el-ph� matrix
element for electron-hole pair creation. The electron-hole
pair creation should be a vertical transition for the � point
optical phonon and the KA effect, such as an increase in the

dissipation of the phonon is possible only when the energy
band gap of a NR is smaller than the energy of the phonon
�about 0.2 eV�.42 First, we study the energy band structures
of Z-NRs, whose lattice and phonon modes are shown in
Figs. 1�a�, 1�c�, and 1�d�, respectively. Z-NRs have a metallic
energy band structure regardless of their widths as shown in
Fig. 2�a�. The metallicity of Z-NRs is due to the edge states
forming a flat energy band at E=0.9 Similarly, armchair
SWNTs have a metallic energy band regardless of their di-
ameters as shown in Fig. 2�b�.4 It is interesting to imagine
that an N=2n−1 Z-NR can be obtained from an �n ,n� arm-
chair SWNT by cutting the circumferential C-C bonds along
the tube axis as shown in Fig. 1�b�. For example, from a
�5,5� armchair SWNT, we get an N=9 Z-NR. The metallicity
of armchair SWNTs is preserved in Z-NRs by the edge
states.43

The phonon eigenvector of the LO �TO� mode is paral-
lel �perpendicular� to the zigzag edge as shown in Figs. 1�c�
and 1�d�. By the displacement of a C atom, the bond
length increases or decreases depending on the position
of the bond. A change in the bond length causes a change
in the three nearest-neighbor hopping integrals from −�0
�=2.7 eV� to −�0+��0,a �a=1,2 ,3� �see the inset between
Figs. 1�c� and 1�d��. The electron eigenfunction in the pres-
ence of ��0,a is given by a linear combination of those in the
absence of ��0,a. In other words, a shift ��0,a works as a
perturbation, by which an electron in the valence band may
be transferred to a state in the conduction band. This is an
electron-hole pair-creation process due to a lattice deforma-
tion. We derive the el-ph matrix element as follows.

Let �A
IJ ��B

I�J� denotes the wave function of an electron
at an A site �B site� at site IJ �I�J where I�� I+1 /2�.
Then �I��A

IJ����0,3�B
I�J is the amplitude for the process that

an electron at the B site with I�J is transferred by the
perturbation ��0,3 into the A site with IJ �see Fig. 1�a��.
Note that ��A

IJ�� indicates complex conjugation of �A
IJ

and ��0,3 for the � point LO and TO modes is constant.
By introducing the Bloch function ��A

J ,�B
J � as �A

IJ

= �eiI�ka� /�M��A
J and �B

I�J= �eiI��ka� /�M��B
J , where k is

the wave vector along the zigzag edge, we obtain

�I��A
IJ����0,3�B

I�J= ��A
J ����0,3eika/2�B

J . By deriving the matrix
elements for ��0,2 and ��0,1 in a similar manner, we obtain
the el-ph matrix element for a vertical electron-hole pair-
creation process such as V+U, where

FIG. 1. �a� The lattice structure of a Z-NR. The solid �empty�
circles denote the A �B� sublattice. We use integers I� �0,M� and
J� �0,N� for the axes. The width �length� W �L� of a Z-NR is given
by N� �aM where a��3acc�. �b� An �n ,n� armchair SWNT is cut
along its axis and flattened out to make a N=2n−1 Z-NR. There is
a metallic energy band in both structures �see Figs. 2�a� and 2�b��.
�c� and �d� The phonon eigenvectors of the � point LO and
TO modes are illustrated. The LO mode satisfies ��0,1=0 and
��0,2=−��0,3. The TO mode is characterized by ��0,1=−2��0,2 and
��0,2=��0,3, and ��0,1, ��0,2, and ��0,3 are defined in the inset.

FIG. 2. The energy band structure of �a� a N=9 Z-NR and �b� a
�5,5� armchair SWNT. �c� 	VL /��	 as a function of ka. The matrix
elements of the vertical transitions, denoted by the arrows �1,2� in
�a� and �b�, are shown as the solid and dashed curves, respectively.
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V = �
J

 �A

J

− �B
J �†
 0 e−ika/2��0,2 + eika/2��0,3

c.c. 0
�
�A

J

�B
J � ,

U = �
J,J�

 �A

J�

− �B
J��†
 0 ��0,1�J�,J+1

��0,1�J�,J−1 0
�
�A

J

�B
J � .

�1�

Here V and U represent the el-ph interactions for the ��0,2
���0,3� perturbation, which acts for the same J, and the ��0,1
perturbation, which acts for the nearest-neighbor pair of J
and J�, respectively. For V in Eq. �1�, c.c. represents the
complex conjugation of e−i�ka/2���0,2+ei�ka/2���0,3. It is also
noted that the minus signs in front of �B

J in Eq. �1� come
from the fact that the Bloch function in the conduction band
is given by ��A

J ,−�B
J � when the Bloch function in the va-

lence band is ��A
J ,�B

J �. This is a property of the nearest-
neighbor tight-binding Hamiltonian with two sublattices. The
matrix elements V and U in Eq. �1� can be rewritten as

V = VT + VL, �2�

where

VT = 2i���0,3 + ��0,2�cos
 ka

2
��

J

Im��A
J��B

J � ,

VL = 2i���0,3 − ��0,2�sin
 ka

2
��

J

Re��A
J��B

J � , �3�

and

U = 2i��0,1�
J

Im��A
J+1��B

J � . �4�

By assuming that the perturbation ��0,a is proportional
to a change in the bond length, we have ��0,1=0 and ��0,2
=−��0,3 for the LO mode, while ��0,1=−2��0,2 and ��0,2
=��0,3 for the TO mode �see Figs. 1�c� and 1�d��. Thus, for
the LO mode, both VT and U vanish because the LO mode
satisfies ��0,2+��0,3=0 and ��0,1=0, respectively. The non-
vanishing matrix element for the LO mode is given by VL
only. By setting ��0,2=−��0,3 and introducing a shift �� due
to a bond stretching as ��0,3��� cos�� /6� in Eq. �3�, we
have

VL = 2�3i�� sin
 ka

2
��

J

�A
J �B

J . �5�

From Eq. �5�, it is understood that the electron-hole pairs
around ka=0 are not excited since 	VL	 is proportional to
sin�ka /2�. Moreover, since the wave function of the edge
states appears only on one of the two sublattices in the hex-
agonal unit cell,9 we have �J�A

J �B
J �0 in Eq. �5� for the edge

states. This suppresses the el-ph matrix element of electron-
hole pair creation for the edge states. These facts can be
checked by a numerical calculation as shown in Fig. 2�c�,
where we plot 	VL /��	 as a function of ka by the solid curves
for the two lowest energy electron-hole pair-creation pro-
cesses, which are denoted by the arrows in Fig. 2�a�. In Fig.
2�c�, we see that the edge states appearing as a flat energy

band at 2� /3	ka	� do not contribute to electron-hole pair
creation �solid line 1�. In Fig. 2�c�, we also plot 	VL /��	 for
a �5,5� armchair SWNT for comparison by the dashed curves
for the two lowest energy electron-hole pair-creation pro-
cesses, which are denoted by the arrows in Fig. 2�b�. As for
the lowest energy electron-hole pairs �the dashed line 1�, 	VL	
increases with increasing ka due to sin�ka /2� in Eq. �5�. This
indicates a constant value of �J�A

J �B
J for the case of arm-

chair SWNTs. In Fig. 2�c�, we see that the matrix element of
the next lowest energy electron-hole pairs vanishes at k0 sat-
isfying �
 /�k 	k0

=0 �van Hove singularity� for both the Z-NR
and armchair SWNT. The same behavior is observed for
higher subbands, and a large density of states due to the van
Hove singularities of the subbands is not effective in produc-
ing the electron-hole pair. For the TO mode, VL vanishes
owing to ��0,2−��0,3=0. Moreover, it can be shown that

Im��A
J��B

J � = 0, Im��A
J+1��B

J � = 0, �6�

since an analytic solution of ��A
J ,�B

J � for Z-NRs is given in
Ref. 44 as

�A
J = 
1

g
sin J� + sin�J + 1���C�g,�� ,

�B
J = 
 
�g,��

g
sin�J + 1���C�g,�� . �7�

Here g�2 cos�ka /2�, and C�g ,�� is a normalization con-
stant, � is the wave number, which is determined by the
boundary condition: �A

N+1=0, and 
�g ,�� is the energy ei-
genvalue in units of −�0. The energy dispersion relation is
given by 
�g ,��2=g2+1+2g cos �.44 Since C��g ,��C�g ,��
is a real number, we get Eq. �6�. As a consequence, we have
VT=0 and U=0 in Eqs. �3� and �4�. Thus, the TO modes give
both V=0 and U=0 for any vertical electron-hole pair-
creation process, and the TO modes decouple from the
electron-hole pairs. This shows the absence of the KA for the
TO modes in Z-NRs.

A renormalized phonon energy is written as a sum of the
unrenormalized energy ��0 and the self-energy 
��0�.
Throughout this paper, we assume a constant value for ��0
as ��0=1600 cm−1 �0.2 eV� both for the LO and TO modes.
The self-energy is given by time-dependent second-order
perturbation theory as


��� = 2�
eh

 	VL	2

�� − Eeh + i�/2
−

	VL	2

�� + Eeh + i�/2�
��fh − fe� , �8�

where the factor 2 comes from spin degeneracy, fh,e
= �1+exp���Eh,e−EF���−1 is the Fermi distribution function,
Ee �Eh� is the energy of an electron �a hole�, and Eeh�Ee
−Eh is the energy of an electron-hole pair. In Eq. �8�, the
decay width � is determined self-consistently by � /2
=−Im�
����. The self-consistent calculation begins by put-
ting � /2=�0 into the right-hand side of Eq. �8�. By summing
the right-hand side, we have a new � /2 via � /2
=−Im�
���� and we put it into the right-hand side again.
This calculation is repeated until 
��� is converged. We use
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Eq. �5� with ���goffu��� /� for VL in Eq. �8�. Here goff is
the off-site electron-phonon matrix element and u��� is the
amplitude of the LO mode. We adopt goff=6.4 eV.45 A simi-
lar value is obtained by a first-principles calculation with the
local-density approximation.46 We use a harmonic-oscillator
model, which gives u���=�� /2McNu�, where Mc is the
mass of a carbon atom and Nu is the number of hexagonal
unit cells.

In Fig. 3�a�, we plot the renormalized energy ��0
+Re�
��0�� as a function of EF for the LO and TO modes in
a N=9 Z-NR at room temperature �300 K�. Since the TO
mode decouples from electron-hole pairs, the self-energy

��0� vanishes and the frequency of the TO mode does not
change from �0. On the other hand, the LO mode exhibits a
KA effect. The error bars extending up to �� /2 in Fig. 3
represent the broadening of the phonon frequency due to the
finite life time of the phonon. The LO mode shows the larg-
est broadening effect of ��5 cm−1 when EF=0 eV. The
value of � decreases quickly when EF�0.1 eV. This is be-
cause of the Pauli exclusion principle, by which a resonant
decay of the LO mode is forbidden when EF���0 /2.40

For comparison, we show the renormalized energies of
the LO and TO modes for a �5,5� armchair SWNT as a func-
tion of EF by the black curves in Fig. 3�a�. The TO mode
exhibits a softening without broadening. The absence of
broadening is due to the fact that the Bloch function can be
taken as a real number for lowest energy sub-bands, i.e., for
vertical transition denoted by the dashed line 1 in Fig. 2�b�
even when a Z-NR is rolled to form an armchair SWNT. The
details are given in Sec. IV. For the LO mode, the broadening
of the Z-NR is smaller than that of the armchair SWNT
because 	VL	 of a Z-NR is smaller than that of armchair
SWNTs for the lower energy bands �see Fig. 2�c��. In fact,
the real part of the right-hand side of Eq. �8� is a negative
�positive� value when Eeh���0 �Eeh	��0�. Thus, electron-
hole pairs with higher �lower� energy contribute to the fre-

quency softening �hardening�.40,47 Since the energies of the
edge states for Z-NR are smaller than ��0, the edge states
may contribute to a frequency hardening like the one shown
around EF=0 for a �5,5� SWNT. The absence of the harden-
ing confirms that the edge states do not contribute to 
��0�
because 	VL	 is negligible.

It is noted that, for the renormalized energies of the LO
and TO modes in NRs shown in Fig. 3, we have not included
all the possible intermediate electron-hole pair states in
evaluating �eh in Eq. �8�. For example, vertical transition
from the highest occupied energy band to the second unoc-
cupied energy band is possible as an intermediate state al-
though such intermediate state does not satisfy the momen-
tum conservation. In this paper, we do not consider the
contribution of momentum non-conserving electron-hole pair
creation processes in evaluating Eq. �8�.

B. Armchair NRs

Next we study the KA in A-NRs. The zigzag SWNTs are
cut along their axes and flattened out to make A-NRs. It is
known that one-third of zigzag SWNTs exhibits a metallic
band structure.4 It is interesting to note that if we cut the
bonds along the axis of a metallic zigzag SWNT in order to
make an A-NR, the obtained A-NR has an energy gap.
Namely, unrolling a metallic �3i ,0� SWNT results in a N
=3i−1 A-NR with an energy gap. Instead, unrolling a semi-
conducting �3i+1,0� SWNT results in a gapless N=3i A-NR
and unrolling a semiconducting �3i+2,0� SWNT results in a
N=3i+1 A-NR with an energy gap. The one-third periodicity
of metallicity is maintained even if zigzag SWNTs are un-
rolled by cutting the bonds. Since metallicity is a necessary
condition for the KA, we study the KA in N=3i metallic
A-NRs here.

In order to specify the lattice structure of an A-NR,
we use integers I� �0,N� and J� �0,M� in Fig. 4�a�. In a
box specified by IJ in Fig. 4�a�, there are two A atoms and
two B atoms. For convenience, we divide the two A �B�
atoms into up-A �up-B� and down-A �down-B�, as shown in
Fig. 4�a�. The wave function then has four components:
�ei�k2��J /�M���uA

I ,�uB
I ,�dA

I ,�dB
I �t, where k is the wave vec-

tor along the armchair edge.
In Figs. 4�b� and 4�c�, we show phonon eigenvectors of

the � point LO and TO modes, respectively. The eigenvector
of the LO �TO� mode is parallel �perpendicular� to the arm-
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FIG. 3. �Color online� �a� The EF dependence of the renormal-
ized energies of the LO and TO modes in a N=9 Z-NR and of the
LO and TO modes in a �5,5� SWNT. �b� The EF dependence of the
renormalized frequencies of the LO and TO modes in a N=9
A-NRand of the LO and TO modes in a �9,0� SWNT.

FIG. 4. �a� The lattice structure of an A-NR. �b� and �c� The
eigenvectors of the � point LO and TO phonon modes are illus-
trated. The LO mode satisfies ��0,1=−2��0,2 and ��0,2=��0,3. The
TO mode is characterized by ��0,1=0 and ��0,2=−��0,3.
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chair edge. The LO mode satisfies ��0,1=−2��0,2 and ��0,2
=��0,3, while the TO mode satisfies ��0,1=0 and ��0,2
=−��0,3. Since ��0,2 and ��0,3 are perturbations that do not
mix �u and �d, the electron-hole pair-creation matrix ele-
ment can be divided into the following two parts

Vu = �
I,I�

 �uA

I�

− �uB
I� �†
 0 ��0,3�I�,I + ��0,2�I�,I+1

h.c. 0
�
�uA

I

�uB
I � ,

Vd = �
I,I�

 �dA

I�

− �dB
I� �†
 0 ��0,2�I�,I + ��0,3�I�,I−1

h.c. 0
�
�dA

I

�dB
I � ,

�9�

where the Hermite conjugate �h.c.� of Vu �Vd� is defined as
��0,3�I�,I+��0,2�I�,I−1 ���0,2�I�,I+��0,3�I�,I+1�. We can re-
write Eq. �9� as

Vu = 2i�
I

���0,3 Im��uA
I� �uB

I � + ��0,2 Im��uA
I+1��uB

I �� ,

Vd = 2i�
I

���0,2 Im��dA
I� �dB

I � + ��0,3 Im��dA
I� �dB

I+1�� .

�10�

The perturbation ��0,1 mixes �u
I and �d

I as

U = �
I �

�uA
I

− �uB
I

�dA
I

− �dB
I
�

†

�
0 0 0 eik2���0,1

0 0 ��0,1 0

0 ��0,1 0 0

e−ik2���0,1 0 0 0
�

��
�uA

I

�uB
I

�dA
I

�dB
I
� , �11�

so that U can be rewritten as

U = i2��0,1�
I

�Im�eik2��uA
I� �dB

I � − Im��uB
I� �dA

I �� . �12�

Now, it can be shown that each energy eigenstate satisfies the
following equations �see Appendix A�,

�
I

�uA
I� �uB

I = �
I

�dA
I� �dB

I ,

�
I

�uA
I+1��uB

I = �
I

�dA
I� �dB

I+1. �13�

Due to these conditions, the TO mode causes a special
cancellation between Vu and Vd as Vu+Vd=0 since ��0,2
+��0,3=0. In addition, we obtain U=0 from ��0,1=0. Thus
the TO modes in A-NRs decouple from electron-hole pairs
and do not undergo a KA. For the LO mode, on the other
hand, there is no cancellation between Vu and Vd, and the
matrix element for the LO mode is given by VL�U+Vu
+Vd. By setting ��0,2=��0,3, −2��0,3=��, and ��0,1=��, we
calculate VL and put it into Eq. �8� to obtain 
��0�.

The solid curves in Fig. 3�b� give the EF dependence of
the renormalized frequencies ��0+Re�
��0�� for the LO
and TO modes in a N=9 A-NR at room temperature. The
frequency of the TO mode is given by �0 showing that the
TO mode decouples from electron-hole pairs. The LO mode
undergoes a KA. For comparison, we show the renormalized
frequency of the LO and TO modes in a �9,0� zigzag SWNT
as the black curves in Fig. 3�b�. It is found that 	
��0�	 for
the LO mode of a N=9 A-NR is smaller than 	
��0�	 for the
LO mode of a �9,0� zigzag SWNT. It is because there are two
linear energy bands near the K and K� points in metallic
zigzag SWNTs, while there is only one linear energy band in
metallic A-NRs, and the KAs in A-NRs are suppressed
slightly as compared to those in metallic zigzag SWNTs. We
note that the broadening in A-NRs is still larger than that in
Z-NRs because of the absence of the edge states near the
armchair edges. The TO mode of a �9,0� zigzag SWNT is
downshifted. However, there is no dependence on EF, which
indicates that only high-energy electron-hole pairs contribute
to the self-energy. We will explore the KA effect for the TO
mode in zigzag SWNTs in Sec. IV.

We have considered NRs with a long length �10 �m� in
calculating the self-energies 
��0� shown in Figs. 3�a� and
3�b�. For NRs with short lengths, the effect of the level spac-
ing on 
��� is not negligible. For example, the level spacing
in armchair SWNTs becomes 0.12 eV when L=30 nm,
which is comparable to ��0 /2. Thus the level spacing affects
the resonant decay. The effect of the level spacing on the
KAs in NRs will be reported elsewhere.

III. RAMAN INTENSITY

A. Raman activity

In the Raman process, an incident photon excites an elec-
tron in the valence energy band into a state in the conduction
energy band. Then the photoexcited electron emits or absorbs
a phonon. The matrix element for the emission or absorption
of a phonon is given by the el-ph matrix element for the
scattering between an electron state in the conduction energy
band and a state in the conduction energy band, which is in
contrast to that for the el-ph matrix element for electron-hole
pair creation, which is relevant to the matrix element from a
state in the valence energy band to a state in the conduction
energy band. This matrix element for the emission or absorp-
tion of a phonon is given by removing the minus sign from
−�B

J �or −�uB,dB
I � of the final state in the electron-hole pair-

creation matrix elements in Eqs. �1�, �9�, and �11�. This op-
eration is equivalent to replacing Im �Re� with Re �Im� in
Eqs. �3�, �4�, �10�, and �12�.

As a result, the Raman intensity of the TO �LO� modes in
Z-NRs is proportional to Re��A

J��B
J � �Im��A

J��B
J ��. Thus the

TO modes are Raman active, while the LO modes are not.
Because the TO modes in Z-NRs are free from the KA, the G
band Raman spectra exhibit the original frequency of the TO
modes, ��0. For A-NRs, on the other hand, the cancellation
between Vu and Vd occurs for the TO modes, and the TO
modes are then not Raman active, while the LO modes are
Raman active. Since the LO modes in A-NRs undergo KAs,
the renormalized frequencies, ��0+
��0�, will appear be-
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low the original frequencies of the LO modes by about
20 cm−1 �see Fig. 3�. Thus, the G band spectra in A-NRs can
appear below those in Z-NRs, which is useful in identifying
the orientation of the edge of NRs by G band Raman spec-
troscopy. Our results are summarized in Table I combined
with the results for armchair and zigzag SWNTs.

For the Raman intensity of armchair SWNTs, we obtain
the same conclusion as that of Z-NRs, that is, the TO modes
are Raman active, while the LO modes are not. For metallic
zigzag SWNTs, on the other hand, the cancellation between
Vu and Vd, which occurs for the TO modes in A-NRs is not
valid. Then the TO modes, in addition to the LO modes, can
be Raman active. However, as we will show in Sec. IV, since
the matrix element for the emission or absorption of the TO
modes vanishes at the van Hove singularities of the elec-
tronic subbands, we can conclude that the TO modes are
hardly excited in resonant Raman spectroscopy. It is interest-
ing to compare these results with other theoretical results for
the Raman intensities of SWNTs. In Ref. 48, it is shown
using bond polarization theory that the Raman intensity is
chirality dependent. In particular, for an armchair �zigzag�
SWNT, the A1g TO �LO� mode is a Raman-active mode,
while the A1g LO �TO� mode is not Raman active. These
results for SWNTs are consistent with our results. We think
that it is natural that the Raman intensity does not change by
unrolling the SWNT, since the Raman intensity is propor-
tional to the number of carbon atoms in the unit cell and is
not sensitive to the small fraction of carbon atoms at the
boundary.

B. Comparison with experiment

We prepare graphene samples by means of the cleavage
method to observe the frequency of the G band Raman spec-
tra. In many cases, graphene samples obtained by the cleav-
age method show that the angles between the edges have an
average value equal to multiples of 30°. This is consistent
with the results by You et al.41 Figure 5�a� shows an optical
image of the exfoliated graphene with the edges crossing

each other with an angle of �30°. This angle can be consid-
ered as an evidence of the presence of edges composed pre-
dominantly of zigzag or armchair edges. Note that the ob-
tained sample is characterized as a multilayer graphene. We
estimated the number of layers to be about five based on the
behavior of the G� band. The sample is placed on a
SiO2�100� surface with 300 nm thickness.

The Raman study was performed using a Jobin-Yvon
T64000 Raman system. The laser energy is 2.41eV �514.5
nm�, the laser power is below 1mW, and the laser spot is
about 1 �m in diameter. Figure 5�b� shows spectra for find-
ing the position dependence of the G band. The results show
that the G band frequency depends on the position of laser
spot. When the spot is focused near the upper edge �A� or far
from the edge, the position of the G band is almost similar to
that of graphite �1582 cm−1�. However, a softening of the G
band is clearly seen when the laser spot moves to the vicinity
of the lower edge �B�.

Based on our theoretical studies, we find that the G band
observed near the upper edge consists only of the TO mode,
while the G band observed near the lower edge comes from
the LO mode, because the G band near the lower edge shows
a downshift, which is considered to be due to the KA effect
of the LO mode. Then, we speculate that the upper �lower�
edge is dominated by the zigzag �armchair� edge. It should

TABLE I. Dependences of the KAs and Raman intensities on
the � point optical phonon modes in NRs and metallic SWNTs. �

and � represent “occurrence” and “absence,” respectively. �

means that the KA is possible, but the broadening effect weakens
due to the presence of the edge states. � means that the KA is
possible, but the EF dependence is suppressed by the decoupling
from the metallic energy band crossing at the Dirac point.

Mode Kohn anomaly Raman active

Z-NRs LO � �

TO � �

A-NRs LO � �

TO � �

Armchair SWNTs LO � �

�rolled Z-NRs� TO � �

Zigzag SWNTs LO � �

�rolled A-NRs� TO � �

FIG. 5. �Color online� �a� An optical image of a graphene
sample. The sample is characterized as a multilayer graphene ��5
layers� sample. �b� The position dependence of the G band fre-
quency. From the theoretical results obtained in this paper, we con-
clude that the G band appearing near the upper �lower� side of the
edge consists only of the TO �LO� mode, and that the upper �lower�
edge is dominated by the zigzag �armchair� edge.
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be noted that our experiment does not prove that the ob-
served downshift in the G band near the lower edge is due to
the KA effect, since we do not examine the EF dependence.
There is a possibility that the observed downshift in the G
band is related to mechanical effects. Mohiuddin et al.49 ob-
served that the G band splits into two peaks due to uniaxial
strain and both peaks exhibit redshifts with increasing strain.
The edge in this work somehow has half of it suspended and
this may decrease the vibration energy. This effect may ex-
plain why for the upper edge in Fig. 5 the frequencies are
slightly downshifted compared with the spectra taken at the
center of the graphene sample. Moreover, it is probable that
the physical edge in this work is a mixture of armchair and
zigzag edges.26 Note also that we measured the D band in
order to confirm that the identification of the orientation of
the edge is consistent with the fact that the D band intensity
is stronger near the armchair edge than the zigzag
edge.25,27,41 However, we could not resolve the difference in
the intensity near the upper and lower edges clearly. Zhou
et al.50 observed by means of high-resolution angle-resolved
photoemission spectroscopy experiment for epitaxial
graphene that the D band gives rise to a kink structure in the
electron self-energy and pointed out that an interplay be-
tween the el-ph and electron-electron interactions play an
important role in the physics relating to the D band. We will
consider these issues further in the future.

IV. PSEUDOSPIN

In the preceding sections we have shown for Z-NRs that
the LO modes are not Raman active and that the TO modes
do not undergo KAs. These results originate from the fact
that the Bloch function is a real number. Besides, the TO
modes in A-NRs are not Raman active and do not undergo
KAs. This is due to the cancellation between Vu and Vd for
the TO modes. The LO modes in A-NRs undergo KAs since
the Bloch function is a complex number. The absence or
presence of a relative phase between �A and �B of the Bloch
function is essential in deriving our results. In this section,
we explain the phase of the Bloch function in terms of the
pseudospin,51 and clarify the effect of the zigzag and arm-
chair edges on the phase of the Bloch function.

A. Absence of a pseudospin phase in Z-NRs

Here we use the effective-mass model in order to under-
stand the reason why the Bloch function in Z-NRs is a real
number. In the effective-mass model, the Bloch functions in
the conduction energy band near the K and K� points are
given by51

�K�kx,ky� =
1
�2


 1

ei� � ,

�K��kx,ky� =
1
�2

 1

− e−i��� , �14�

where kx and ky �kx� and ky�� are measured from the K �K��
point and the angle � ���� is defined by kx+ iky �	k	ei� �kx�

+ iky��	k�	ei���. It is noted that kx �ky� is taken as parallel to
the zigzag �armchair� edge. Then ky is reflected into −ky at
the zigzag edge, and the scattered state is given by

�K�kx,− ky� =
1
�2


 1

e−i� � , �15�

as shown in Fig. 6.
The relative phase of the wave function at the A and B

sublattices can be characterized by the direction of the pseu-
dospin. The pseudospin is defined by the expectation value
of the Pauli matrices �x,y,z with respect to the Bloch
function.51 For �K�kx ,ky�, we have ��x�=cos �, ��y�=sin �,
and ��z�=0. For �K�kx ,−ky�, we have ��x�=cos �, ��y�
=−sin �,and ��z�=0. Then ��y� flips at the zigzag edge as
shown in Fig. 6. Thus, due to an interference between the
incoming and reflected waves, we have ��y�=0 for the Bloch
function near the zigzag edge. The condition ��y�=0 means
that the Bloch function becomes a real number. In fact, since
��y�=2�JIm��A

J��B
J � and ��x�=2�JRe��A

J��B
J � for the Bloch

function ��A
J ,�B

J � in Eq. �7�, the el-ph matrix elements VT
and VL �Eq. �3�� are proportional to ��y� and ��x�, respec-
tively. In Appendix B, we show the relationship between
the Bloch function �K in the effective-mass model �Eq. �14��
and the Bloch function ��A

J ,�B
J � in the tight-binding model

�Eq. �7��.
We point out that the condition ��y�=0 is not satisfied in

the case of armchair SWNTs �rolled Z-NRs� except for the
lowest energy sub-bands of ky =0. This is the reason why we
see in Fig. 3�a� that the TO mode exhibits no broadening but
a softening with a constant energy �−30 cm−1 in a �5,5�
SWNT. It is interesting to note that the Aharanov-Bohm flux
applied along the tube axis shifts the cutting lines52–54 and
can make ky for the lowest energy sub-bands nonzero. Thus
the Aharanov-Bohm flux makes that ��y��0 even for the
lowest energy sub-bands, for which the TO mode can exhibit
a broadening.55

Since the effective-mass model describes the physics well
in the long-wavelength limit, an advantage in the above dis-
cussion of using the effective-mass model is that it is not

FIG. 6. In the k space, we consider a state near the K point �solid
circle� and states, which are scattered by the zigzag and armchair
edges �empty circles�. kx �ky� is taken as parallel to the zigzag
�armchair� edge. The arrows in the insets indicate the direction of
the pseudospins. The ��y� component of the pseudospin is reversed
at the zigzag edge, while the ��x� component is preserved at the
armchair edge.

KOHN ANOMALIES IN GRAPHENE NANORIBBONS PHYSICAL REVIEW B 80, 155450 �2009�

155450-7



necessary for the edge of graphene NRs to be well-defined
on an atomic scale in order that we have a cancellation of
��y�. This may be the reason why we observe a softening of
the G band near the edge of an armchair-rich sample experi-
mentally as shown in Sec. III B.

B. Coherence of the pseudospin in A-NRs

On the other hand, a state near the K point with �kx ,ky� is
reflected by the armchair edge into a state near the K� point
with �kx� ,ky��= �−kx ,ky�, and the scattered state is given by
�K��−kx ,ky�. In this case, by putting ��=�−� into �K��kx ,ky�
in Eq. �14�, we obtain

�K��− kx,ky� =
1
�2


 1

ei� � , �16�

which is identical to the initial Bloch function, �K�kx ,ky�.
Thus the relative phase between the A and B Bloch functions
is conserved thorough the reflection by the armchair edge so
that the Bloch function cannot be reduced to a real number.
Namely, the reflections by the armchair edge preserve the
pseudospin as shown in Fig. 6. It is expected that the relative
phase makes it possible that KAs occur not only for the LO
mode but also for the TO mode near the armchair edge.
However, as we have shown in Eq. �13�, the armchair edge
gives rise to the cancellation between Vu and Vd, so that the
TO modes in A-NRs do not undergo KAs. We consider
whether Eq. �13� is satisfied in the case of zigzag SWNTs or
not, in order to see if the KA effect is present in zigzag
SWNTs or not. By applying the Bloch theorem to zigzag
SWNTs, we have

�uA
I = �eiIka/2�N��A,

�uB
I = �ei�I+1/2�ka/2�N��B,

�dA
I = �ei�I+1/2�ka/2�N��A,

�dB
I = �eiIka/2�N��B, �17�

where we set ��= t��A,�B�. Using these equations, we ob-
tain

�
I

�uA
I� �uB

I =
1

4
eika/2�A

� �B,

�
I

�dA
I� �dB

I =
1

4
e−ika/2�A

� �B. �18�

Thus the first equation in Eq. �13� is not satisfied for zigzag
SWNTs. Similarly, we have

�
I

�uA
I+1��uB

I =
1

4
e−ika/2�A

� �B,

�
I

�dA
I� �dB

I+1 =
1

4
eika/2�A

� �B, �19�

which shows that the second equation in Eq. �13� is not
fulfilled either. Thus the TO modes can undergo KAs be-

cause the cancellation between Vu and Vd is not possible for
zigzag SWNTs. In fact, by putting Eqs. �18� and �19� into
Eq. �10�, we get

Vu + Vd = i���0,2 + ��0,3�sin � cos
ka

2
+ i���0,3

− ��0,2�cos � sin
ka

2
, �20�

where we set �A
� �B=ei�. Because the TO modes satisfy

��0,2+��0,3=0, Vu+Vd can take a nonzero value for

Vu + Vd = i2��0,3 sin
 ka

2
�cos � . �21�

It is noted that Eq. �21� vanishes when �= �� /2. This
condition �= �� /2 is satisfied for low-energy electron-hole
pairs when the energy band crosses the Dirac point. In other
words, high-energy electron-hole pairs in the subbands can
contribute to a frequency softening of the TO mode in zigzag
SWNTs. This is why we obtain the downshift in the TO
mode for a �9,0� zigzag SWNT as shown in Fig. 3. In “me-
tallic” zigzag SWNTs, the curvature effect shifts the position
of the cutting line56 of the metallic energy band from the
Dirac point and produces a small energy gap.57–60 In this
case, the low-energy electron-hole pairs satisfy cos ��0 in
Eq. �21� and they contribute to a frequency hardening of the
TO modes in metallic zigzag SWNTs. The curvature effect
gives rise to a change in the Fermi surface and results in KAs
for the TO modes.40 Similarly, the matrix element for the
emission or absorption of the TO modes in zigzag SWNTs is
given by

2��0,3 sin
 ka

2
�sin � , �22�

which does not vanish in general. This shows that the TO
modes in zigzag SWNTs can be Raman active. However,
since the van Hove singularities of subbands in zigzag
SWNTs are located on the kx axis �and satisfy �=0�, the sin �
factor tells us that the TO modes are hardly excited in reso-
nant Raman spectroscopy.

V. DISCUSSION

The theoretical analysis performed in this paper is based
on the use of a simple tight-binding method, which includes
only the first-nearest-neighbor hopping integral and its varia-
tion due to the atomic displacements. The approximation
used is partly justified because the deformation potential and
the el-ph matrix element with respect to the second-nearest
neighbors is about one order of magnitude smaller than that
of the first-nearest neighbors.46,45 However, we have not con-
sidered the effect of the overlap integral. The overlap integral
breaks the particle-hole symmetry and may invalidate our
results. Besides, we have neglected the contribution of mo-
mentum nonconserving electron-hole pair creation processes
in evaluating �eh in Eq. �8�. Although this is an approxima-
tion which works well for thin NRs, the inclusion of the
momentum nonconserving electron-hole pair creation pro-

SASAKI et al. PHYSICAL REVIEW B 80, 155450 �2009�

155450-8



cesses may invalidate our results. We will elaborate on this
idea in the future.

VI. SUMMARY

In summary, the LO modes undergo KAs in graphene
NRs while the TO modes do not. This conclusion does not
depend on the orientation of the edge. In Z-NRs, the Raman
intensities of the LO modes are strongly suppressed because
the wave function is a real number, and only the TO modes
are Raman active. As a result, the KA for the LO mode in
Z-NRs would be difficult to observe in Raman spectroscopy.
In A-NRs, only the LO modes are Raman active owing to the
cancellation between Vu and Vd. The chirality-dependent Ra-
man intensity derived for NRs is the same as the chirality-
dependent Raman intensity for SWNTs calculated in Ref. 48.
The strong downshift in the LO mode makes it possible to
identify the orientation of edges of graphene by the G band
Raman spectroscopy due to the chirality-dependent Raman
intensity.
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APPENDIX A: DERIVATION OF Eq. (13)

In this Appendix, we derive Eq. �13� by using mirror and
time-reversal symmetries. Let us introduce the mirror-
reflection operator M by

M�n,k
I =�

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
��

�uA
I

�uB
I

�dA
I

�dB
I
� �I = 0, . . . ,N� ,

�A1�

where k is the wave vector along the armchair edge and n is
the band index. By applying M to the energy eigenequation
Hk�n,k=En,k�n,k, we get MHk�n,k=En,kM�n,k. Since the
Hamiltonian satisfies MHkM

−1=H−k, we obtain M�n,k
=ei��n,−k where � is a phase factor.

On the other hand, due to the time-reversal symmetry, we
have �n,k

� =ei���n,−k. Thus, by combining the time-reversal
symmetry ��n,k

� =ei���n,−k� with the mirror symmetry
�M�n,k=ei��n,−k�, we get

M�n,k = ei���n,k
� , �A2�

that is,

�
�dB

I

�dA
I

�uB
I

�uA
I
� = ei���

�uA
I�

�uB
I�

�dA
I�

�dB
I�
� . �A3�

Using this condition, one sees that Eq. �13� is satisfied.

APPENDIX B: RELATIONSHIP BETWEEN EQ. (7)
AND EQ. (14)

Here we will show for Z-NRs that the Bloch function
derived using the tight-binding lattice model �Eq. �7�� is a
superposition of incoming and reflected Bloch functions de-
rived using the effective-mass model �Eq. �14��. By rewriting
the Bloch function of Z-NRs ��A

J ,�B
J � in Eq. �7� as

�A
J =

C�g,��
2i


1

g
+ ei��eiJ� + c.c.,

�B
J =

C�g,��
2i


�g,��
ei�

g
eiJ� + c.c., �B1�

where c.c. denotes the complex conjugation of the first term,
one sees that ��A

J ,�B
J � is a real number as a result of the

cancellation of the imaginary part between the first and sec-
ond terms. By introducing a new Bloch function �� as

�� �
C�g,��

2ig
ei�
g + e−i�


�g,�� � , �B2�

the Bloch function ��A
J ,�B

J � is expressed by


�A
J

�B
J � = ��eiJ� + ��

� e−iJ�. �B3�

Because of the different signs in the exponents of eiJ� and
e−iJ� in Eq. �B3�, � may be thought of as the wave vector
perpendicular to the zigzag edge �ky� multiplied by a lattice
constant ��� as �=ky�. Assuming that �=ky�, the zigzag
edge reflects a state with ky ���eiJ�� into a state with −ky
��−�e−iJ��. We then expect that the Bloch function near the
zigzag edge is given by

��eiJ� + �−�e−iJ�. �B4�

It is noted that Eq. �B4� is different from Eq. �B3� because
�−� is not identical to ��

� in general. However, we will
get �−�=��

� for Z-NRs because we may assume that
the normalization constant C�g ,�� in Eq. �B2� satisfies
C�g ,−��=−C��g ,�� without the loss of generality. There-
fore, Eq. �B4� is consistent with Eq. �B3�, which indicates
that the assumption ��=ky�� is appropriate. The condition
�−�=��

� is a nontrivial condition since it is satisfied only for
the zigzag edge and is essential for ��A

J ,�B
J � to be a real

number.
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Using Eq. �14� we obtain �K�kx ,−ky�=�K�kx ,ky��, which
corresponds to �−�=��

� . In fact, by putting �g+e−i��
�	g+e−i�	e−i� into Eq. �B2� and by using 
�g ,��
= 	g+e−i�	,44 the Bloch state �� can be written as

�� =
1
�2


 1

ei� � , �B5�

where � and � are the same as each other near the K point.
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